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Problem
_ The testbed shall:

To facilitate research in prognostics, it is imperative to have

a hardware testbed that mimics the complexities and e Resemble a system that has real-world relevance

issues encountered for a real system. o Allow for repeated run-to-failure of components
Such a system will support e Perform run-to-failure in reasonable time
e Algorithm development e Support monitoring of ground truth
e Testing and validation of prognostic tools o Collect data for state assessment
e Benchmarking of different approaches e Support demonstration of prognostic solutions
e Development of metrics for prognostics o Allow control of several operational and/or environmental
e Collection and dissemination of run-to-failure data variables

e Allow quantification of uncertainty sources
Goal . e
- o e Support repeated run-to-failure within a finite budget
e Demonstrate ability to distinguish between components
_ _ o e Support automated data collection during the aging
at different health states having similar external

observables and then to predict the end of life J
Testbed — Data Experimental setup
Collection e A set of Li-ion cells

e Aging dynamics slow enough to be observable and fast enough for reasonable run-to-failure
times (~1 month)

e Low cost

e May be aged either inside or outside an environmental chamber
e Programmable Charger and Electronic Load
e EIS equipment for battery health monitoring (BHM)
e Sensor suite — Voltage, Current, Temperature
e Custom switching circuitry

e Data acquisition system

: IE“Z‘.::.T.;EL‘“" ! e Computer for control and analysis
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. . ' Experimental Plan
SIS e Cells are cycled through charge and discharge under
different load and environmental conditions set by
the electronic load and environmental chamber
Iy respectively
EIn A 1y .o Periodically EIS measurements are taken to monitor
i the internal condition of the battery
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- £ S — _______ e DAQ system collects externally observable
CEEC parameters from the sensors
o AN  Switching circuitry enables cells to be in the charge,
: lEL Y s discharge or EIS health monitoring state as dictated
e s we s s n e oo by the aging regime

Algorithm Development Sample Results

The algorithms considered so far include both

ARIMA Prediction

EKF Tracking and Prediction GPR Predictions

n = ' ' ' Xx ' " !
model-based as well as data-driven algorithms, for o=} ~ . 1 e | I
nat X ox i TRox e
0est ) % " [~] 95% confidence | gl xXx | 0.9} \\ \\\\\\ -
: =] a bounds ’XX = -~
exal I Iple . 08} x o . L < 0.85
= = 085F X measure d capacity . B £ . 1
Zorst g a q =< EKF prediction @ 35 weeks | % %‘ 0.8l Prediction @ we k48\
6 07 RUL threshald \\§ ¥ O 6 el o EKF predlctmnk@ £2 weeks g | §_ : \
. 3 % % < weoveen ERE state tracking 8 751 i
e Relevance vector machines (RVM) | R - fooos 31 ®
o6t @ @ N e L el il 'x_-ﬁ
. . - g g gg%bmnféden\ce_ 0.7 LLRUL thresholg e ossl week 70 |
e Gaussian Process Regression (GPR) N | x N
i 10 20 an 40 50 &0 70 085 . . . : : : 0.6 : . . . . .
Week 10 2 a0 40 =0 &0 70 0 10 20 30 40 50 60 70
Wileak Weeks
e Particle Filters (PF, RBPF)

Neural Networks (NN)

Comparision of PF and REPF pdfs RBPF Prediction

- 1 1'|r
e Random Forest Regression = |
i 0.85 » R:a[data RBPE 'i 085 » R:al data
e ARIMA models 2 odl “x ok T oo Y® oy
5 ® o
e Kalman Filters 2 0% ‘ S osq i
] ] . é 0.8} £ E‘ 0.8} &
Further algorithms will be explored and results will | d Jd
= 0.75) % = 075 il
. . . . . z 2 <
be published to disseminate findings on z o |RULthreshoi 2 . g ___ o S s —_
g ®  ruLpas * 8 - ‘? ? RUL pdfs %
. g . m
advantages and disadvantages of each one. S osy S S oed i g 2
@ 1 e o
© 06 . , i i E E \ | B 0.6 i ill. e O ; . . .
0 10 20 30 40 30 &0 Kl g0 0 10 0 an 40 50 G0 70 a0
Time (weeks) Time (weeks)

Www.nasa.gov



Battery Prognostics
Bhaskar Saha and Kai Goebel

Prognostics Center of Excellence, NASA ARC

Problem

Electric Propulsion Space Experiment (AFRL) Questions to be Answered
. e Ammonia Arcjet onboard ARGOS Can the current mission be completed?
(1999) e Given the health of the battery, is there enough charge left
e Gases released from electrolyte for anticipated load profile (within allowable uncertainty
decomposition resulted in a breach of bounds)?
the battery case, releasing

: . e Dominant metrics: state of charge (SOC), state of health
superheated gas into the unit (SOH)

(Courtesy: AFRL-PR-ED-TR-2001-0027)

- \
Beech A200 (Reg # N258AG) Can future missions be completed~
*Onboard generators failed to activate as |&  Given the health of the battery, at what point can typical

starter was still engaged after ignition future missions not be met?

e Dominant metrics: end of life (EOL), state of health (SOH)
resulting in total electrical failure

A —_—
disabling normal landing gear extension — H I | Hﬂj/‘

capability | i e(ShorttermT
eLanding gear failed & the plane crashed  (Courtesy: NTSB, ID #SEA00LA066) end of charge ?

(NASA/IPL, Artist's concept) : M a rs G I O b al S u rveyo r \ / \ _
*The MGS failed Nov 2006 e fenetem

eBattery completely discharged

Mission
Profile

SOH

"We think that the failure was due to a GOAL: Develop a model that makes a prediction of
s # ZZZ';VSI Z(l)?gtz d"étczz rsezlcgaiz;for the end-of-charge and end-of-life based on rapid
temperature went up, and battery state of health (SOH) assessment
failed...”
John McNamee Mars Exploration Program, NASA
Approach
Battery Schematic Relevance Vector Machine
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Impedance = Resistance + Reactance Particle Filter
DISCHARGE CHARGE — State of the art for nonlinear P()
Electrochemical Impedance non-Gaussian state estimation
..The EXtema.I VOItage (E) O.f a batte.ry Spectroscopy (EIS) — Uses model to predict and data
ITE less r;[han its Open Circuit Potential «Carry out a frequency sweep to correst prediction
whenever it is in use. .. -
(Eo) *Plot Capacitive (1/wC) v/s Resistive (R) — Sequential Monte-Carlo simulations |
eLosses are due to: component of the Reactance with Importance Sampling for 2
* Ro: Internal Resistance (IR drop), *Response is different in presence of p-step ahead predictions : ' 1 :
k k+1

passivation and corrosion, providing a

Rp: Polarization Resi i i
* Rp: Polarization Resistance diagnostic for the health state of battery

e Rc: Concentration Polarization R Feature Model
_ Extraction Regression |dentification
*These losses tend to increase as the Electrolyte Weakening
current drawn from the battery ? Increasing Ohmic Resistance
Increases. J— p— Feature PF
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Ohmic resistance (Ro) and polarization
resistance (Rp) of a Li-ion battery
gradually increase with aging 0
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